22,072 research outputs found

    Pattern formation of quantum jumps with Rydberg atoms

    Get PDF
    We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition. It also allows one to dissipatively prepare Rydberg crystals

    Temperature Dependence Of The Electrical Resistivity Of LaxLu1-xAs

    Get PDF
    We investigate the temperature-dependent resistivity of single-crystalline films of LaxLu1-xAs over the 5-300 K range. The resistivity was separated into lattice, carrier and impurity scattering regions. The effect of impurity scattering is significant below 20 K, while carrier scattering dominates at 20-80 K and lattice scattering dominates above 80 K. All scattering regions show strong dependence on the La content of the films. While the resistivity of 600 nm LuAs films agree well with the reported bulk resistivity values, 3 nm films possessed significantly higher resistivity, suggesting that interfacial roughness significantly impacts the scattering of carriers at the nanoscale limit. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.Microelectronics Research Cente

    Complementary algorithms for graphs and percolation

    Full text link
    A pair of complementary algorithms are presented. One of the pair is a fast method for connecting graphs with an edge. The other is a fast method for removing edges from a graph. Both algorithms employ the same tree based graph representation and so, in concert, can arbitrarily modify any graph. Since the clusters of a percolation model may be described as simple connected graphs, an efficient Monte Carlo scheme can be constructed that uses the algorithms to sweep the occupation probability back and forth between two turning points. This approach concentrates computational sampling time within a region of interest. A high precision value of pc = 0.59274603(9) was thus obtained, by Mersenne twister, for the two dimensional square site percolation threshold.Comment: 5 pages, 3 figures, poster version presented at statphys23 (2007

    Automatic Dimension Selection for a Non-negative Factorization Approach to Clustering Multiple Random Graphs

    Full text link
    We consider a problem of grouping multiple graphs into several clusters using singular value thesholding and non-negative factorization. We derive a model selection information criterion to estimate the number of clusters. We demonstrate our approach using "Swimmer data set" as well as simulated data set, and compare its performance with two standard clustering algorithms.Comment: This paper has been withdrawn by the author due to a newer version with overlapping content
    corecore